An Improved Multi-task Learning Approach with Applications in Medical Diagnosis

نویسندگان

  • Jinbo Bi
  • Tao Xiong
  • Shipeng Yu
  • Murat Dundar
  • R. Bharat Rao
چکیده

We propose a family of multi-task learning algorithms for collaborative computer aided diagnosis which aims to diagnose multiple clinically-related abnormal structures from medical images. Our formulations eliminate features irrelevant to all tasks, and identify discriminative features for each of the tasks. A probabilistic model is derived to justify the proposed learning formulations. By equivalence proof, some existing regularization-based methods can also be interpreted by our probabilistic model as imposing a Wishart hyperprior. Convergence analysis highlights the conditions under which the formulations achieve convexity and global convergence. Two real-world medical problems: lung cancer prognosis and heart wall motion analysis, are used to validate the proposed algorithms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Effective Task Scheduling Framework for Cloud Computing using NSGA-II

Cloud computing is a model for convenient on-demand user’s access to changeable and configurable computing resources such as networks, servers, storage, applications, and services with minimal management of resources and service provider interaction. Task scheduling is regarded as a fundamental issue in cloud computing which aims at distributing the load on the different resources of a distribu...

متن کامل

An Approach to Management of Health Care and Medical Diagnosis Using of a Hybrid Disease Diagnosis System

Introduction: In order to simplify the information exchange within the medical diagnosis process, a collaborative software agent’s framework is presented. The purpose of the framework is to allow the automated information exchange between different medicine specialists. Methods: This study presented architecture of a hybrid disease diagnosis system. The architecture employed a learning...

متن کامل

Supervised and Unsupervised Tumor Characterization in the Deep Learning Era

Computer Aided Diagnosis (CAD) tools are often needed for fast and accurate detection, characterization, and risk assessment of different tumors from radiology images. Any improvement in robust and accurate image-based tumor characterization can assist in determining non-invasive cancer stage, prognosis, and personalized treatment planning as a part of precision medicine. In this study, we prop...

متن کامل

A Multi-Objective Approach to Fuzzy Clustering using ITLBO Algorithm

Data clustering is one of the most important areas of research in data mining and knowledge discovery. Recent research in this area has shown that the best clustering results can be achieved using multi-objective methods. In other words, assuming more than one criterion as objective functions for clustering data can measurably increase the quality of clustering. In this study, a model with two ...

متن کامل

An Improved Semantic Schema Matching Approach

Schema matching is a critical step in many applications, such as data warehouse loading, Online Analytical Process (OLAP), Data mining, semantic web [2] and schema integration. This task is defined for finding the semantic correspondences between elements of two schemas. Recently, schema matching has found considerable interest in both research and practice. In this paper, we present a new impr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008